Abstract
Nowadays, avocado has strong demand around the world due to its nutritional properties and because it is all year supplied from different parts of the world, being Peru one of the main providers. However, nutrient deficiencies and plague attacks during cultivation stages represent a major difficulty for farmers since early identification of these states (i.e. deficiencies and plagues) is a time-consuming activity that requires trained evaluators to do so. In this paper, an automatic method for identification of avocado leaf state is proposed. This method uses k-means, in a s-v space at superpixel level, to segment leaf from uniform background from images captured in-field in semi-controlled conditions and a shallow neural network to classify composed histograms from segmented leaves into 4 states: Healthy, Fe deficiency, Mg deficiency and red spider plague. The proposed method separates leaf from background with an average F-score of 0.98 and classifies leaf condition with an overall accuracy of 96.8%.
Original language | English |
---|---|
Title of host publication | 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781728114910 |
DOIs | |
State | Published - Apr 2019 |
Externally published | Yes |
Event | 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Bucaramanga, Colombia Duration: 24 Apr 2019 → 26 Apr 2019 |
Publication series
Name | 2019 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 - Conference Proceedings |
---|
Conference
Conference | 22nd Symposium on Image, Signal Processing and Artificial Vision, STSIVA 2019 |
---|---|
Country/Territory | Colombia |
City | Bucaramanga |
Period | 24/04/19 → 26/04/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
Keywords
- Artificial neural networks
- Avocado
- leaf diseases
- superpixels