TY - JOUR
T1 - Composites and additive manufacturing for high-field coil supports for stellarators
AU - Queral, V.
AU - Rincón, E.
AU - Lumsdaine, A.
AU - Cabrera, S.
AU - Spong, D.
N1 - Publisher Copyright:
© 2021
PY - 2021/8
Y1 - 2021/8
N2 - The utilization of composites layered on an additive manufactured substrate, for the production of coil supports for modular coils in small or middle size experimental stellarators is assessed. The focus of the study is a monolithic coil support comprising the coils of a half-period of a stellarator, somewhat similar to the ones in UST_2 and ARIES-CS stellarators. However, the concept may be applicable to quasi-monolithic coil supports (coil forms of NCSX type) or individual coil casings (W7-X type). Coil supports for stellarators require high precision, stiffness and strength for large contorted parts. Traditionally, monolithic coil supports are produced by steel casting/forging and final machining. This production method and material gives accurate, stiff and strong coil supports, but the method may be expensive for monolithic supports due to the geometrical complexity and required accuracy of the structure. In relation to those matters, this work investigates whether a monolithic coil support comprising an additive manufactured resin substrate, which is externally (outward from the coils) surrounded with a thick layer of fibre-reinforced resin, may achieve enough strength and stiffness under middle/high magnetic fields. Finite element calculations are produced to obtain the direction of the principal stresses and their values in compression and tension at different areas of the monolithic support, which is relevant for anisotropic materials. The feasibility of directional application of (carbon) fibres on the winding surface of the stellarator outward from the coils is experimentally tested on a scaled-down additively manufactured prototype of a monolithic support. The strength and stiffness of the composite structure appears sufficient for common magnetic fields in experimental stellarators, and the 3D-composite design and manufacturing was technically feasible.
AB - The utilization of composites layered on an additive manufactured substrate, for the production of coil supports for modular coils in small or middle size experimental stellarators is assessed. The focus of the study is a monolithic coil support comprising the coils of a half-period of a stellarator, somewhat similar to the ones in UST_2 and ARIES-CS stellarators. However, the concept may be applicable to quasi-monolithic coil supports (coil forms of NCSX type) or individual coil casings (W7-X type). Coil supports for stellarators require high precision, stiffness and strength for large contorted parts. Traditionally, monolithic coil supports are produced by steel casting/forging and final machining. This production method and material gives accurate, stiff and strong coil supports, but the method may be expensive for monolithic supports due to the geometrical complexity and required accuracy of the structure. In relation to those matters, this work investigates whether a monolithic coil support comprising an additive manufactured resin substrate, which is externally (outward from the coils) surrounded with a thick layer of fibre-reinforced resin, may achieve enough strength and stiffness under middle/high magnetic fields. Finite element calculations are produced to obtain the direction of the principal stresses and their values in compression and tension at different areas of the monolithic support, which is relevant for anisotropic materials. The feasibility of directional application of (carbon) fibres on the winding surface of the stellarator outward from the coils is experimentally tested on a scaled-down additively manufactured prototype of a monolithic support. The strength and stiffness of the composite structure appears sufficient for common magnetic fields in experimental stellarators, and the 3D-composite design and manufacturing was technically feasible.
KW - Additive manufacturing
KW - Coils
KW - Composite
KW - High-field
KW - Stellarator
UR - http://www.scopus.com/inward/record.url?scp=85102973806&partnerID=8YFLogxK
U2 - 10.1016/j.fusengdes.2021.112477
DO - 10.1016/j.fusengdes.2021.112477
M3 - Artículo
AN - SCOPUS:85102973806
SN - 0920-3796
VL - 169
JO - Fusion Engineering and Design
JF - Fusion Engineering and Design
M1 - 112477
ER -