Devitrification process of FeSiBCuBbX nanocrystalline alloys: Moessbauer study of the intergranular phase

J. M. Borrego, C. F. Conde, A. Conde, V. A. Peña-Rodríguez, J. M. Greneche

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Moessbauer experiments were performed at room temperature using different experimental configurations on several series of nanocrystalline FeSiBCuNbX alloys (X = Zr, Nb, Mo and V) obtained after annealing treatments of melt-spun ribbons. The refinement of Moessbauer spectra allows the kinetics and the local structural rearrangement mechanisms associated with the nanocrystallization process to be compared. The hyperfine field distributions of the intergranular phase show the emergence of a bimodal behaviour that becomes significantly more pronounced from volumetric crystalline fractions estimated at approximately 20-25%, regardless of the nature of the substituting element. The hyperfine field distribution can be described by means of two Gaussian components, consistent with of a two-cluster-like model. Such a behaviour can be attributed to the presence of iron-rich and iron-poor zones within the intergranular phase, resulting from the diffusion process. These mechanisms are found to be independent of the nature of X. In addition, strong in-plane magnetic structures are evidenced for Nb-, Mo-, and V-based systems while the magnetic domains tend to be randomly distributed in Zr-based nanocrystalline alloys.
Original languageAmerican English
Pages (from-to)8089-8100
Number of pages12
JournalJournal of Physics Condensed Matter
DOIs
StatePublished - 18 Sep 2000

Fingerprint

Dive into the research topics of 'Devitrification process of FeSiBCuBbX nanocrystalline alloys: Moessbauer study of the intergranular phase'. Together they form a unique fingerprint.

Cite this