Abstract
© 2019 IEEE. Heart disease is one of the biggest problems in the world that will continue to be research. We have made an overview of the research related to heart disease. We verify that algorithms have been used for the classification of cardiac diseases: Apriori, decision tree, naive Bayesian. Neural network, SVM, ANN, KN and others. In this research, we have designed three architectures of neural networks to evaluate which of them adapts and predicts better the presence of heart diseases, we have determined that the architecture that best adapts is a neural network Backpropagation with quadratic error 0.01788 with a 99.26% accuracy. In addition, we have designed a web application tool to detect heart disease, this tool has been designed with the steps of software engineering.
Original language | American English |
---|---|
Pages | 562-567 |
Number of pages | 6 |
DOIs | |
State | Published - 1 Oct 2019 |
Event | Proceedings - 2019 7th International Engineering, Sciences and Technology Conference, IESTEC 2019 - Duration: 1 Oct 2019 → … |
Conference
Conference | Proceedings - 2019 7th International Engineering, Sciences and Technology Conference, IESTEC 2019 |
---|---|
Period | 1/10/19 → … |