Human exposure to novel bartonella species from contact with fruit bats

Ying Bai, Modupe O.V. Osinubi, Lynn Osikowicz, Clifton McKee, Neil M. Vora, Maria Rosales Rizzo, Sergio Recuenco, Lora Davis, Mike Niezgoda, Ajoke M. Ehimiyein, Grace S.N. Kia, Akin Oyemakinde, Olufunmilayo Sanni Adeniyi, Yemi H. Gbadegesin, Olugbon A. Saliman, Abiodun Ogunniyi, Albert B. Ogunkoya, Michael Y. Kosoy, Ivan V. Kuzmin, Dianna BlauJames Ellison, Lauren Greenberg, Marissa Person, Ryan Wallace, Panayampalli S. Satheshkumar, Abimbola Aman-Oloniyo, Elizabeth B. Adedire, Mariat O. Soleye, Gloria C. Okara, Sebastian Yennan, Mohammed Abdurrahman, Munir A. Sani, Solomon W. Audu, Maruf Lawal, Philip P. Mshelbwala

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

© 2018, Centers for Disease Control and Prevention (CDC). All rights reserved. Twice a year in southwestern Nigeria, during a traditional bat festival, community participants enter designated caves to capture bats, which are then consumed for food or traded. We investigated the presence of Bartonella species in Egyptian fruit bats (Rousettus aegyptiacus) and bat flies (Eucampsipoda africana) from these caves and assessed whether Bartonella infections had occurred in persons from the surrounding communities. Our results indicate that these bats and flies harbor Bartonella strains, which multilocus sequence typing indicated probably represent a novel Bartonella species, proposed as Bartonella rousetti. In serum from 8 of 204 persons, we detected antibodies to B. rousetti without cross-reactivity to other Bartonella species. This work suggests that bat-associated Bartonella strains might be capable of infecting humans.
Original languageAmerican English
Pages (from-to)2317-2323
Number of pages7
JournalEmerging Infectious Diseases
DOIs
StatePublished - 1 Dec 2018

Fingerprint

Dive into the research topics of 'Human exposure to novel bartonella species from contact with fruit bats'. Together they form a unique fingerprint.

Cite this