Abstract
The purpose of the research is to apply machine learning techniques to identify the cocoa tree's diseases (Theobroma cacao L.) and avoid the loss of crop harvests because farmers lack immediate tools to detect diseases on time. The methodology considers the use of machine learning with techniques for image processing and analysis such as HoG (Histograms of Oriented Gradient), LBP (Local Binary Pattern), and the SVM (Support Vector Machine) algorithm, for the classification to determine if the plant cocoa is being affected or not by disease. The results obtained show that SVM, Random Forest, and ANN's application with the characteristic vectors extracted with the HOG and LBP extraction algorithms predict the cocoa plant state; therefore, it is advisable to increase the dataset so that the results are more accurate.
Original language | English |
---|---|
Pages (from-to) | 7732-7741 |
Number of pages | 10 |
Journal | Annals of the Romanian Society for Cell Biology |
Volume | 25 |
Issue number | 3 |
State | Published - 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2021, Universitatea de Vest Vasile Goldis din Arad. All rights reserved.
Keywords
- ANN (Artificial Neural Networks)
- Cocoa
- HOG ((Histograms of Oriented Gradient)
- LBP (Local Binary Pattern)
- Machine Learning
- SVM (Support Vector Machine)