Abstract
The systematics of the suppression of superconductivity with increasing magnetic field in boron-doped nanocrystalline chemical vapor deposition diamond is studied in a broad temperature range. At the temperature of TS0 which is above the critical temperature, a plateau is observed in the resistivity versus temperature curve ρ (T) taken at zero magnetic field. When a magnetic field of B= BSN (N=1,2,5) is applied, the plateau moves to low temperature with the thermoresistivity maximum located at T SN (N=1,2,5). The ρ (B) curves, measured at different temperatures around TSN, intersect in the ρ -B plane at the field of B= BSN. By tuning BSN from 0 to 5 T, a series of plateaus in the ρ -T plane and the corresponding intersections in the ρ -B plane are observed. The intersections quadratically chain up in the ρ -B plane, separating the superconducting from the insulating region. The thermoresistivity maxima exponentially group up in the ρ -T plane, thus defining a phase fluctuation zone. The phase boundary, composed of the intersections and separating the superconducting states from the insulating state, is shown to be a generic consequence of granularity.
Original language | English |
---|---|
Article number | 013904 |
Journal | Journal of Applied Physics |
Volume | 108 |
Issue number | 1 |
DOIs | |
State | Published - 1 Jul 2010 |
Externally published | Yes |
Bibliographical note
Funding Information:The authors are grateful for the support of the Belgian IAP, the FWO under Grant No. G.0430.07N, the INPAC Project under Project Nos. EF/05/005 and GOA/09/005, and the Methusalem Funding by the Flemish Government.