Non-minimum phase switched systems: HOSM-based fault detection and fault identification via Volterra integral equation

H. Ríos, D. Efimov, J. Davila, T. Raïssi, L. Fridman, A. Zolghadri

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

In this paper, the problem of continuous and discrete state estimation for a class of linear switched systems with additive faults is studied. The class of systems under study can contain non-minimum phase zeroes in some of their 'operating modes'. The conditions for exact reconstruction of the discrete state are given using structural properties of the switched system. The state space is decomposed into the strongly observable part, the non-strongly observable part, and the unobservable part, to analyze the effect of the unknown inputs. State observers based on high-order sliding mode to exactly estimate the strongly observable part and Luenberger-like observers to estimate the remaining parts are proposed. For the case when the exact estimation of the state cannot be achieved, the ultimate bounds on the estimation errors are provided. The proposed strategy includes a high-order sliding-mode-based fault detection and a fault identification scheme via the solution of a Volterra integral equation. The feasibility of the proposed method is illustrated by simulations.

Original languageEnglish
Pages (from-to)1372-1397
Number of pages26
JournalInternational Journal of Adaptive Control and Signal Processing
Volume28
Issue number12
DOIs
StatePublished - 1 Dec 2014

Bibliographical note

Publisher Copyright:
Copyright © 2013 John Wiley & Sons, Ltd.

Keywords

  • Fault detection and identification
  • High-order sliding mode
  • Non-minimum phase
  • Switched systems

Fingerprint Dive into the research topics of 'Non-minimum phase switched systems: HOSM-based fault detection and fault identification via Volterra integral equation'. Together they form a unique fingerprint.

Cite this