TY - JOUR

T1 - Polytropic spheres with electric charge

T2 - Compact stars, the Oppenheimer-Volkoff and Buchdahl limits, and quasiblack holes

AU - Arbañil Vela, Jose Domingo

AU - Lemos, José P.S.

AU - Zanchin, Vilson T.

N1 - Copyright:
Copyright 2013 Elsevier B.V., All rights reserved.

PY - 2013/10/16

Y1 - 2013/10/16

N2 - We explore a class of compact charged spheres made of a charged perfect fluid with a polytropic equation of state. The charge density is chosen to be proportional to the energy density. The study is performed by solving the Tolman-Oppenheimer-Volkoff equation, which describes the hydrostatic equilibrium. We show the dependence of the structure of the spheres for several characteristic values of the polytropic exponent and for different values of the charge densities. We also study other physical properties of the charged spheres, such as the total mass, total charge, radius and sound speed and their dependence on the polytropic exponent. We find that for the polytropic exponent γ=4/3 the Chandrasekhar mass limit coincides with the Oppenheimer-Volkoff mass limit. We test the Oppenheimer-Volkoff limit for such compact objects. We also analyze the Buchdahl limit for these charged polytropic spheres, which happens in the limit of very high polytropic exponents, i.e., for a stiff equation of state. It is found that this limit is extremal and it is a quasiblack hole.

AB - We explore a class of compact charged spheres made of a charged perfect fluid with a polytropic equation of state. The charge density is chosen to be proportional to the energy density. The study is performed by solving the Tolman-Oppenheimer-Volkoff equation, which describes the hydrostatic equilibrium. We show the dependence of the structure of the spheres for several characteristic values of the polytropic exponent and for different values of the charge densities. We also study other physical properties of the charged spheres, such as the total mass, total charge, radius and sound speed and their dependence on the polytropic exponent. We find that for the polytropic exponent γ=4/3 the Chandrasekhar mass limit coincides with the Oppenheimer-Volkoff mass limit. We test the Oppenheimer-Volkoff limit for such compact objects. We also analyze the Buchdahl limit for these charged polytropic spheres, which happens in the limit of very high polytropic exponents, i.e., for a stiff equation of state. It is found that this limit is extremal and it is a quasiblack hole.

UR - http://www.scopus.com/inward/record.url?scp=84886891948&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.88.084023

DO - 10.1103/PhysRevD.88.084023

M3 - Artículo

AN - SCOPUS:84886891948

VL - 88

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

SN - 1550-7998

IS - 8

M1 - 084023

ER -