Abstract
Sensing systems containing iron oxide nanoparticles have shown high potential for improving the catalytic activity of diverse analytes. However, the role of magnetic systems in these processes is not fully understood. In addition, colloidal stability of iron oxide nanoparticles is another obstacle for their application in sensing platforms. In this study, we report the synthesis of cetyltrimethylammonium bromide (CTAB) stabilized Fe3O4 magnetic nanoparticles (MNPs), characterization and their electrochemistry applications for citric acid detection, which is an important addictive in industrial products. The stability of these particles was monitored and compared by zeta potential, dynamic light scattering (DLS) measurements and nanoparticle tracking analysis (NTA). X-ray diffraction (XRD) pattern confirmed the presence of the single crystalline phase. Electron paramagnetic resonance (EPR) measurements were taken at some selected temperatures showing that the main feature of the X-band solid state EPR spectrum has a strong transition at geff = 2 at room temperature (RT). This absorption band is correlated to the symmetry of the cubic inverse spinel structure of magnetite which reinforced the results obtained by XRD powder pattern. Thermal evolution dependence of Landé g-factor, resonance field and line width has been evaluated. The size of the superparamagnetic nanocrystallites can be easily controlled with diameter less than 5 nm (4.2 ± 0.3 nm) according to Transmission Electron Microscopy (TEM) measurement. Electrochemical measurements have been employed to investigate how the catalytic properties of Fe3O4 nanoparticles stabilized with CTAB immobilized by Layer-by-Layer (LbL) technique influence on the reduction of citric acid. Chronoamperometry gives a sensitivity of 3.0 nA μM- 1 for the citric acid in the linear range (R2: 0.997) between 50 μM and 2.5 mM with a limit of detection (LOD, s/n = 3) of 40 μM, which agreed with the dynamic chronoamperometry results. Dynamic chronoamperometry signals also demonstrate that the sensor response is not affected for some interferents such as: Ca2 +, Na+, Mg2+, K+, Cl, uric acid, glucose, catechol and dopamine. In summary, we demonstrate that CTAB-stabilized magnetic nanoparticles improve the catalytic reduction of citric acid and present high potential for sensor applications.
Original language | English |
---|---|
Pages (from-to) | 158-166 |
Number of pages | 9 |
Journal | Journal of Electroanalytical Chemistry |
Volume | 755 |
DOIs | |
State | Published - 14 Aug 2015 |
Bibliographical note
Funding Information:We gratefully thank to the next organizations: Red de Macro Universidades de América Latina y el Caribe and CAPES (Project PNPD20131739 ) for the financial support. We wish to thank Valéria Spolon Marangoni, PhD student from Nanomedicine and Nanotoxicology Laboratory, IFSC-USP, Brazil, for her assistance in the synthesis of magnetic nanoparticles and TEM measurements. We also wish to thank the technician José Augusto Lopes da Rocha, from IFSC/USP staff, for their assistance in the X-ray diffractometer analyses.
Publisher Copyright:
© 2015 Elsevier B.V. All rights reserved.
Keywords
- Cetyltrimethylammonium bromide (CTAB)
- Chronoamperometry
- Citric acid
- Dynamic chronoamperometry
- Electrochemical sensor
- Magnetic nanoparticles