TY - JOUR
T1 - A comparative DFT study of the Schiff base formation from acetaldehyde and butylamine, glycine and phosphatidylethanolamine
AU - Solís-Calero, Christian
AU - Ortega-Castro, Joaquín
AU - Hernàndez-Laguna, Alfonso
AU - Muñoz, Francisco
N1 - Funding Information:
This work was funded by the Spanish Government in the framework of Project CTQ2008-02207/BQU. One of us (C. S-C) wishes to acknowledge MAE-AECI fellowship from the Spanish Ministry of Foreign Affairs and Cooperation. The authors are grateful to Centro de Cálculo de Computación de Galicia (CESGA), and the Centro de Cálculo de Computación de Cataluña (CESCA), for access to their computational facilities.
PY - 2012/9
Y1 - 2012/9
N2 - Mechanisms for the formation of the Schiff base from acetaldehyde and butylamine, glycine and phosphatidylethanolamine based on Dmol3/DFT calculations were realized. For the case of phosphatidylethanolamine, calculations were done under periodic boundary conditions, in an amine-phospholipid monolayer model with two molecules of phosphatidylethanolamine by cell. All models contained explicit aqueous solvent. In the three cases, a neutral amino group is used to model the nucleophilic attack on the carbonyl group of acetaldehyde, and water molecules form hydrogen bond networks. These networks were involved in the reactions by performing as proton-transfer carriers, important in some steps of reactions, and stabilizing reaction intermediates. In all the studied reactions, they take place in two steps, namely: (1) formation of a carbinolamine and (2) its dehydration to the Schiff base, being the dehydration the rate-determining step of the process, consistent with available experimental evidence for similar reactions. The main difference between the studied reactions is found in the value for relative free energy for the intermediates and transition states in the second step; these values are lower in the cases of glycine and phosphatidylethanolamine in comparison with butylamine, due the influence of their molecular environments. Based on the results, the aminophospholipid surface environment and carboxylic group of glycine may boost Schiff base formation via a neighboring catalyst effect.
AB - Mechanisms for the formation of the Schiff base from acetaldehyde and butylamine, glycine and phosphatidylethanolamine based on Dmol3/DFT calculations were realized. For the case of phosphatidylethanolamine, calculations were done under periodic boundary conditions, in an amine-phospholipid monolayer model with two molecules of phosphatidylethanolamine by cell. All models contained explicit aqueous solvent. In the three cases, a neutral amino group is used to model the nucleophilic attack on the carbonyl group of acetaldehyde, and water molecules form hydrogen bond networks. These networks were involved in the reactions by performing as proton-transfer carriers, important in some steps of reactions, and stabilizing reaction intermediates. In all the studied reactions, they take place in two steps, namely: (1) formation of a carbinolamine and (2) its dehydration to the Schiff base, being the dehydration the rate-determining step of the process, consistent with available experimental evidence for similar reactions. The main difference between the studied reactions is found in the value for relative free energy for the intermediates and transition states in the second step; these values are lower in the cases of glycine and phosphatidylethanolamine in comparison with butylamine, due the influence of their molecular environments. Based on the results, the aminophospholipid surface environment and carboxylic group of glycine may boost Schiff base formation via a neighboring catalyst effect.
KW - Monolayer model
KW - Periodic boundary conditions
KW - Phospholipids
KW - Schiff base formation
UR - http://www.scopus.com/inward/record.url?scp=84865154989&partnerID=8YFLogxK
U2 - 10.1007/s00214-012-1263-2
DO - 10.1007/s00214-012-1263-2
M3 - Artículo
AN - SCOPUS:84865154989
SN - 1432-881X
VL - 131
SP - 1
EP - 12
JO - Theoretical Chemistry Accounts
JF - Theoretical Chemistry Accounts
IS - 9
M1 - 1263
ER -