Resumen
This article aims to identify the current state of the art of the latest research related to models and algorithms in support vector machines for regression. For that, we use the methodology proposed by Kitchenham and Charter, in order to answer the following research questions: Q1: In which research areas is the support vector machine for regression most used? Q2. What optimization models are used to support vector machine for regression? Q3. What algorithms or optimization methods are used to solve support vector machine for regression? Q4. What nonconvex optimization models use support vector machine for regression? Q5. What optimization algorithms are used for nonconvex models to support vector machine for regression? We obtain valuable information about the questions to construct new models and algorithms in this research area.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Proceedings of the 2021 IEEE Sciences and Humanities International Research Conference, SHIRCON 2021 |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
ISBN (versión digital) | 9781665429146 |
DOI | |
Estado | Publicada - 2021 |
Evento | 5th IEEE Sciences and Humanities International Research Conference, SHIRCON 2021 - Lima, Perú Duración: 17 nov. 2021 → 19 nov. 2021 |
Serie de la publicación
Nombre | Proceedings of the 2021 IEEE Sciences and Humanities International Research Conference, SHIRCON 2021 |
---|
Conferencia
Conferencia | 5th IEEE Sciences and Humanities International Research Conference, SHIRCON 2021 |
---|---|
País/Territorio | Perú |
Ciudad | Lima |
Período | 17/11/21 → 19/11/21 |
Nota bibliográfica
Publisher Copyright:© 2021 IEEE.