An adaptive sliding-mode observer for a class of uncertain nonlinear systems

H. Ríos, D. Efimov, W. Perruquetti

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

35 Citas (Scopus)


In this paper, the problem of simultaneous state and parameter estimation is studied for a class of uncertain nonlinear systems. A nonlinear adaptive sliding-mode observer is proposed based on a nonlinear parameter estimation algorithm. It is shown that such a nonlinear algorithm provides a rate of convergence faster than exponential, ie, faster than the classic linear algorithm. Then, the proposed parameter estimation algorithm is included in the structure of a sliding-mode state observer, providing an ultimate bound for the full estimation error and attenuating the effects of the external disturbances. Moreover, the synthesis of the observer is given in terms of linear matrix inequalities. The corresponding proofs of convergence are developed based on the Lyapunov function approach and input-to-state stability theory. Some simulation results illustrate the efficiency of the proposed adaptive sliding-mode observer.

Idioma originalInglés
Páginas (desde-hasta)511-527
Número de páginas17
PublicaciónInternational Journal of Adaptive Control and Signal Processing
EstadoPublicada - mar. 2018

Nota bibliográfica

Publisher Copyright:
Copyright © 2018 John Wiley & Sons, Ltd.


Profundice en los temas de investigación de 'An adaptive sliding-mode observer for a class of uncertain nonlinear systems'. En conjunto forman una huella única.

Citar esto