An inexact scalarization proximal point method for multiobjective quasiconvex minimization

E. A. Papa Quiroz, S. Cruzado

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. In this paper we present an inexact scalarization proximal point algorithm to solve unconstrained multiobjective minimization problems where the objective functions are quasiconvex and locally Lipschitz. Under some natural assumptions on the problem, we prove that the sequence generated by the algorithm is well defined and converges. Then providing two error criteria we obtain two versions of the algorithm and it is proved that each sequence converges to a Pareto–Clarke critical point of the problem; furthermore, it is also proved that assuming an extra condition, the convergence rate of one of these versions is linear when the regularization parameters are bounded and superlinear when these parameters converge to zero.
Idioma originalInglés estadounidense
PublicaciónAnnals of Operations Research
DOI
EstadoPublicada - 1 ene 2020

Huella

Profundice en los temas de investigación de 'An inexact scalarization proximal point method for multiobjective quasiconvex minimization'. En conjunto forman una huella única.

Citar esto