Clarke Subdifferential, Pareto-Clarke Critical Points and Descent Directions to Multiobjective Optimization on Hadamard Manifolds

Erik Alex Papa Quiroz, Nancy Baygorrea, Nelson Maculan

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

1 Cita (Scopus)

Resumen

In this paper, we aim to complement our work reported in [20] by showing some further properties and results on Clarke subdifferential, Pareto-Clarke critical points and descent directions on Hadamard manifolds. These tools and results can be applied to introduce new algorithms for solving nonsmooth nonconvex multiobjective minimization problems on Hadamard manifolds.

Idioma originalInglés
Título de la publicación alojadaModelling, Computation and Optimization in Information Systems and Management Sciences - Proceedings of the 4th International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences - MCO 2021
EditoresHoai An Le Thi, Hoai Minh Le, Hoai An Le Thi, Tao Pham Dinh
EditorialSpringer Science and Business Media Deutschland GmbH
Páginas182-192
Número de páginas11
ISBN (versión impresa)9783030926656
DOI
EstadoPublicada - 2022
Publicado de forma externa
Evento4th International conference on Modelling, Computation and Optimization in Information Systems and Management Sciences, MCO 2021 - Hanoi, Vietnam
Duración: 11 dic. 202113 dic. 2021

Serie de la publicación

NombreLecture Notes in Networks and Systems
Volumen363 LNNS
ISSN (versión impresa)2367-3370
ISSN (versión digital)2367-3389

Conferencia

Conferencia4th International conference on Modelling, Computation and Optimization in Information Systems and Management Sciences, MCO 2021
País/TerritorioVietnam
CiudadHanoi
Período11/12/2113/12/21

Nota bibliográfica

Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

Huella

Profundice en los temas de investigación de 'Clarke Subdifferential, Pareto-Clarke Critical Points and Descent Directions to Multiobjective Optimization on Hadamard Manifolds'. En conjunto forman una huella única.

Citar esto