Construction of proximal distances over symmetric cones

Julio López, Erik Alex Papa Quiroz

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

2 Citas (Scopus)


© 2017 Informa UK Limited, trading as Taylor & Francis Group. This paper is devoted to the study of proximal distances defined over symmetric cones, which include the non-negative orthant, the second-order cone and the cone of positive semi-definite symmetric matrices. Specifically, our first aim is to provide two ways to build them. For this, we consider two classes of real-valued functions satisfying some assumptions. Then, we show that its corresponding spectrally defined function defines a proximal distance. In addition, we present several examples and some properties of this distance. Taking into account these properties, we analyse the convergence of proximal-type algorithms for solving convex symmetric cone programming (SCP) problems, and we study the asymptotic behaviour of primal central paths associated with a proximal distance. Finally, for linear SCP problems, we provide a relationship between the proximal sequence and the primal central path.
Idioma originalInglés estadounidense
Páginas (desde-hasta)1301-1321
Número de páginas21
EstadoPublicada - 3 ago. 2017


Profundice en los temas de investigación de 'Construction of proximal distances over symmetric cones'. En conjunto forman una huella única.

Citar esto