Resumen
In this paper, we propose a risk analysis model to obtain the probability of default of microfinance clients in Peru. Our model uses trends of predictive analysis through variants of neural network algorithms; and data processing methodologies such as the Knowledge Discovery in Databases (KDD). The analysis method is used through Bayesian networks which allows the customer data evaluation and is related to our model data. This model is composed of 5 phases: 1. The input elements for the analysis; 2. The process of evaluation and analysis; 3. The regulatory standards; 4. The technological architecture; 5. The output elements. This model allows knowing the probability of compliance of a client with 84% prediction accuracy. The model validation was carried out in a microfinance institution in Lima, Peru, using cross-validation, evaluating the sensitivity and specificity of the results.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2019 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2019 - Conference Proceedings |
Editores | Monica Andrea Rico Martinez |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
ISBN (versión digital) | 9781728147468 |
DOI | |
Estado | Publicada - oct. 2019 |
Publicado de forma externa | Sí |
Evento | 2019 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2019 - 5th International Conference on Innovation and Trends in Engineering, CONIITI 2019 - Bogota, Colombia Duración: 2 oct. 2019 → 4 oct. 2019 |
Serie de la publicación
Nombre | 2019 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2019 - Conference Proceedings |
---|
Conferencia
Conferencia | 2019 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2019 - 5th International Conference on Innovation and Trends in Engineering, CONIITI 2019 |
---|---|
País/Territorio | Colombia |
Ciudad | Bogota |
Período | 2/10/19 → 4/10/19 |
Nota bibliográfica
Publisher Copyright:© 2019 IEEE.