Early cardiac disease detection using neural networks

Hugo D. Calderon-Vilca, Kevin E.Chagua Callupe, Richard J.Inga Aliaga, Jair Barzola Cuba, Flor C. Marino-Cardenas

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

8 Citas (Scopus)

Resumen

Heart disease is one of the biggest problems in the world that will continue to be research. We have made an overview of the research related to heart disease. We verify that algorithms have been used for the classification of cardiac diseases: Apriori, decision tree, naive Bayesian. Neural network, SVM, ANN, KN and others. In this research, we have designed three architectures of neural networks to evaluate which of them adapts and predicts better the presence of heart diseases, we have determined that the architecture that best adapts is a neural network Backpropagation with quadratic error 0.01788 with a 99.26% accuracy. In addition, we have designed a web application tool to detect heart disease, this tool has been designed with the steps of software engineering.

Idioma originalInglés
Título de la publicación alojadaProceedings - 2019 7th International Engineering, Sciences and Technology Conference, IESTEC 2019
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas562-567
Número de páginas6
ISBN (versión digital)9781728116914
DOI
EstadoPublicada - oct. 2019
Publicado de forma externa
Evento7th International Engineering, Sciences and Technology Conference, IESTEC 2019 - Panama City, Panamá
Duración: 9 oct. 201911 oct. 2019

Serie de la publicación

NombreProceedings - 2019 7th International Engineering, Sciences and Technology Conference, IESTEC 2019

Conferencia

Conferencia7th International Engineering, Sciences and Technology Conference, IESTEC 2019
País/TerritorioPanamá
CiudadPanama City
Período9/10/1911/10/19

Nota bibliográfica

Publisher Copyright:
© 2019 IEEE.

Huella

Profundice en los temas de investigación de 'Early cardiac disease detection using neural networks'. En conjunto forman una huella única.

Citar esto