TY - JOUR
T1 - Ecological determinants of rabies virus dynamics in vampire bats and spillover to livestock
AU - Meza, Diana K.
AU - Mollentze, Nardus
AU - Broos, Alice
AU - Tello, Carlos
AU - Valderrama, William
AU - Recuenco, Sergio
AU - Carrera, Jorge E.
AU - Shiva, Carlos
AU - Falcon, Nestor
AU - Viana, Mafalda
AU - Streicker, Daniel G.
N1 - Publisher Copyright:
© 2022 The Authors.
PY - 2022/9/14
Y1 - 2022/9/14
N2 - The pathogen transmission dynamics in bat reservoirs underpin efforts to reduce risks to human health and enhance bat conservation, but are notoriously challenging to resolve. For vampire bat rabies, the geographical scale of enzootic cycles, whether environmental factors modulate baseline risk, and how within-host processes affect population-level dynamics remain unresolved. We studied patterns of rabies exposure using an 11-year, spatially replicated sero-survey of 3709 Peruvian vampire bats and co-occurring outbreaks in livestock. Seroprevalence was correlated among nearby sites but fluctuated asynchronously at larger distances. A generalized additive mixed model confirmed spatially compartmentalized transmission cycles, but no effects of bat demography or environmental context on seroprevalence. Among 427 recaptured bats, we observed long-term survival following rabies exposure and antibody waning, supporting hypotheses that immunological mechanisms influence viral maintenance. Finally, seroprevalence in bats was only weakly correlated with outbreaks in livestock, reinforcing the challenge of spillover prediction even with extensive data. Together our results suggest that rabies maintenance requires transmission among multiple, nearby bat colonies which may be facilitated by waning of protective immunity. However, the likelihood of incursions and dynamics of transmission within bat colonies appear largely independent of bat ecology. The implications of these results for spillover anticipation and controlling transmission at the source are discussed.
AB - The pathogen transmission dynamics in bat reservoirs underpin efforts to reduce risks to human health and enhance bat conservation, but are notoriously challenging to resolve. For vampire bat rabies, the geographical scale of enzootic cycles, whether environmental factors modulate baseline risk, and how within-host processes affect population-level dynamics remain unresolved. We studied patterns of rabies exposure using an 11-year, spatially replicated sero-survey of 3709 Peruvian vampire bats and co-occurring outbreaks in livestock. Seroprevalence was correlated among nearby sites but fluctuated asynchronously at larger distances. A generalized additive mixed model confirmed spatially compartmentalized transmission cycles, but no effects of bat demography or environmental context on seroprevalence. Among 427 recaptured bats, we observed long-term survival following rabies exposure and antibody waning, supporting hypotheses that immunological mechanisms influence viral maintenance. Finally, seroprevalence in bats was only weakly correlated with outbreaks in livestock, reinforcing the challenge of spillover prediction even with extensive data. Together our results suggest that rabies maintenance requires transmission among multiple, nearby bat colonies which may be facilitated by waning of protective immunity. However, the likelihood of incursions and dynamics of transmission within bat colonies appear largely independent of bat ecology. The implications of these results for spillover anticipation and controlling transmission at the source are discussed.
KW - Chiroptera
KW - Desmodus rotundus
KW - eco-immunology
KW - metapopulation maintenance
KW - wildlife
KW - zoonoses
UR - http://www.scopus.com/inward/record.url?scp=85137311960&partnerID=8YFLogxK
U2 - 10.1098/rspb.2022.0860
DO - 10.1098/rspb.2022.0860
M3 - Artículo
C2 - 36069012
AN - SCOPUS:85137311960
SN - 0962-8452
VL - 289
JO - Proceedings of the Royal Society B: Biological Sciences
JF - Proceedings of the Royal Society B: Biological Sciences
IS - 1982
M1 - 20220860
ER -