Encapsulation of Bioactive Compounds for Food and Agricultural Applications

Giovani Leone Zabot, Fabiele Schaefer Rodrigues, Lissara Polano Ody, Marcus Vinícius Tres, Esteban Herrera, Heidy Palacin, Javier S. Córdova-Ramos, Ivan Best, Luis Olivera-Montenegro

Resultado de la investigación: Contribución a una revistaArtículo de revisiónrevisión exhaustiva

1 Cita (Scopus)

Resumen

This review presents an updated scenario of findings and evolutions of encapsulation of bioactive compounds for food and agricultural applications. Many polymers have been reported as encapsulated agents, such as sodium alginate, gum Arabic, chitosan, cellulose and carboxymethylcellulose, pectin, Shellac, xanthan gum, zein, pullulan, maltodextrin, whey protein, galactomannan, modified starch, polycaprolactone, and sodium caseinate. The main encapsulation methods investigated in the study include both physical and chemical ones, such as freeze-drying, spray-drying, extrusion, coacervation, complexation, and supercritical anti-solvent drying. Consequently, in the food area, bioactive peptides, vitamins, essential oils, caffeine, plant extracts, fatty acids, flavonoids, carotenoids, and terpenes are the main compounds encapsulated. In the agricultural area, essential oils, lipids, phytotoxins, medicines, vaccines, hemoglobin, and microbial metabolites are the main compounds encapsulated. Most scientific investigations have one or more objectives, such as to improve the stability of formulated systems, increase the release time, retain and protect active properties, reduce lipid oxidation, maintain organoleptic properties, and present bioactivities even in extreme thermal, radiation, and pH conditions. Considering the increasing worldwide interest for biomolecules in modern and sustainable agriculture, encapsulation can be efficient for the formulation of biofungicides, biopesticides, bioherbicides, and biofertilizers. With this review, it is inferred that the current scenario indicates evolutions in the production methods by increasing the scales and the techno-economic feasibilities. The Technology Readiness Level (TRL) for most of the encapsulation methods is going beyond TRL 6, in which the knowledge gathered allows for having a functional prototype or a representative model of the encapsulation technologies presented in this review.

Idioma originalInglés
Número de artículo4194
PublicaciónPolymers
Volumen14
N.º19
DOI
EstadoPublicada - oct. 2022
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2022 by the authors.

Huella

Profundice en los temas de investigación de 'Encapsulation of Bioactive Compounds for Food and Agricultural Applications'. En conjunto forman una huella única.

Citar esto