FindMySequence: a neural-network-based approach for identification of unknown proteins in X-ray crystallography and cryo-EM

Grzegorz Chojnowski, Adam J. Simpkin, Diego A. Leonardo, Wolfram Seifert-Davila, Dan E. Vivas-Ruiz, Ronan M. Keegan, Daniel J. Rigden

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

18 Citas (Scopus)

Resumen

Although experimental protein-structure determination usually targets known proteins, chains of unknown sequence are often encountered. They can be purified from natural sources, appear as an unexpected fragment of a well characterized protein or appear as a contaminant. Regardless of the source of the problem, the unknown protein always requires characterization. Here, an automated pipeline is presented for the identification of protein sequences from cryo-EM reconstructions and crystallographic data. The method's application to characterize the crystal structure of an unknown protein purified from a snake venom is presented. It is also shown that the approach can be successfully applied to the identification of protein sequences and validation of sequence assignments in cryo-EM protein structures.

Idioma originalInglés
Páginas (desde-hasta)86-97
Número de páginas12
PublicaciónIUCrJ
Volumen9
DOI
EstadoPublicada - 1 ene. 2022

Nota bibliográfica

Publisher Copyright:
© 2022.

Huella

Profundice en los temas de investigación de 'FindMySequence: a neural-network-based approach for identification of unknown proteins in X-ray crystallography and cryo-EM'. En conjunto forman una huella única.

Citar esto