Resumen
This article contributes with a finite-time model reference adaptive control approach to solve the robust tracking problem for a class of disturbed scalar linear systems. A nonlinear continuous control law, composed of nonlinear adaptive gains, provides a finite-time rate of convergence. For the ideal case, that is, without external disturbances, the tracking and the parameter (ideal control gains) identification error converge to zero in a finite time. For the disturbed case, the tracking and the parameter identification error dynamics are finite-time input-to-state stable with respect to the external disturbance. The corresponding convergence proofs and the robustness analysis are based on a Lyapunov function approach, input-to-state stability theory, and homogeneity theory. Finally, simulation and experimental results show the feasibility of the proposed scheme.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 1231-1247 |
Número de páginas | 17 |
Publicación | International Journal of Adaptive Control and Signal Processing |
Volumen | 36 |
N.º | 5 |
DOI | |
Estado | Publicada - may. 2022 |
Nota bibliográfica
Publisher Copyright:© 2022 John Wiley & Sons Ltd.