Resumen
We will focus on the existence of nontrivial solutions to the following nonlinear elliptic equation -Δu + V (x)u = f (u), x ∈ R2, where V is a nonnegative function which can vanish at infinity or be unbounded from above, and f have exponential growth range. The proof involves a truncation argument combined with Mountain Pass Theorem and a Trudinger-Moser type inequality.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 325-351 |
Número de páginas | 27 |
Publicación | Proyecciones |
Volumen | 38 |
N.º | 2 |
DOI | |
Estado | Publicada - jun. 2019 |
Nota bibliográfica
Publisher Copyright:© 2019, Proyecciones Journal of Mathematics.