Resumen
This paper contributes to the stability analysis for nonlinear impulsive dynamical systems based on a vector Lyapunov function and its divergence operator. The new method relies on a 2D time domain representation. Different types of stability notions for a class of nonlinear impulsive systems are studied using a vector Lyapunov function approach. The results are applied to analyze the stability of a class of Lipschitz nonlinear impulsive systems based on Linear Matrix Inequalities. Some numerical examples illustrate the feasibility of the proposed approach.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 32-40 |
Número de páginas | 9 |
Publicación | Automatica |
Volumen | 80 |
DOI | |
Estado | Publicada - 1 jun. 2017 |
Nota bibliográfica
Publisher Copyright:© 2017 Elsevier Ltd