Resumen
In this paper, we present an analysis about the rate of convergence of an inexact proximal point algorithm to solve minimization problems for quasiconvex objective functions on Hadamard manifolds. We prove that under natural assumptions the sequence generated by the algorithm converges linearly or superlinearly to a critical point of the problem.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 457-467 |
Número de páginas | 11 |
Publicación | Journal of the Operations Research Society of China |
Volumen | 5 |
N.º | 4 |
DOI | |
Estado | Publicada - 1 dic. 2017 |
Publicado de forma externa | Sí |
Nota bibliográfica
Publisher Copyright:© 2016, Operations Research Society of China, Periodicals Agency of Shanghai University, Science Press, and Springer-Verlag Berlin Heidelberg.