Plane branches with Newton non-degenerate polars

A. Hefez, M. E. Hernandes, M. F.H. Iglesias

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

Resumen

To an equisingularity class of complex plane branches, described by its multiplicity n and characteristic exponents β1 < ⋯ < βr, 0 < n < β1, there is a naturally associated family K(n,β1,...,βr) of equations containing a complete set of analytic representatives for all branches of the class. We show in this paper that the general polar curve of any member of K(n,β1,...,βr) is Newton degenerate, except when r = 1, in which case the general member of K(n,β1) corresponds to a curve which has a Newton non-degenerate general polar curve with a fixed Newton polygon, or when r = 2, n = 2p, β1 = 2q, β2 = 2q + d, with GCD(p,q) = 1 and d ≥ 1 is odd, in which case K(2p, 2q, 2q + d) has a subset containing a complete set of analytic representatives for all branches of the class whose general member has also a Newton non-degenerate general polar curve with a fixed Newton polygon. In both cases, we give explicit Zariski open sets the points of which represent branches with Newton non-degenerate polars and describe the topology of their general polars.

Idioma originalInglés
Número de artículo1850001
PublicaciónInternational Journal of Mathematics
Volumen29
N.º1
DOI
EstadoPublicada - 1 ene 2018

Nota bibliográfica

Publisher Copyright:
© 2018 World Scientific Publishing Company.

Huella

Profundice en los temas de investigación de 'Plane branches with Newton non-degenerate polars'. En conjunto forman una huella única.

Citar esto