Polytropic spheres with electric charge: Compact stars, the Oppenheimer-Volkoff and Buchdahl limits, and quasiblack holes

Jose Domingo Arbañil Vela, José P.S. Lemos, Vilson T. Zanchin

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

37 Citas (Scopus)

Resumen

We explore a class of compact charged spheres made of a charged perfect fluid with a polytropic equation of state. The charge density is chosen to be proportional to the energy density. The study is performed by solving the Tolman-Oppenheimer-Volkoff equation, which describes the hydrostatic equilibrium. We show the dependence of the structure of the spheres for several characteristic values of the polytropic exponent and for different values of the charge densities. We also study other physical properties of the charged spheres, such as the total mass, total charge, radius and sound speed and their dependence on the polytropic exponent. We find that for the polytropic exponent γ=4/3 the Chandrasekhar mass limit coincides with the Oppenheimer-Volkoff mass limit. We test the Oppenheimer-Volkoff limit for such compact objects. We also analyze the Buchdahl limit for these charged polytropic spheres, which happens in the limit of very high polytropic exponents, i.e., for a stiff equation of state. It is found that this limit is extremal and it is a quasiblack hole.

Idioma originalInglés
Número de artículo084023
PublicaciónPhysical Review D - Particles, Fields, Gravitation and Cosmology
Volumen88
N.º8
DOI
EstadoPublicada - 16 oct 2013
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Polytropic spheres with electric charge: Compact stars, the Oppenheimer-Volkoff and Buchdahl limits, and quasiblack holes'. En conjunto forman una huella única.

Citar esto