Resumen
Savings and credit cooperatives in Peru are of great importance for their participation in the economy, reaching in 2019, deposits and deposits and assets of more than 2,890,191,000. However, they do not invest in predictive technologies to identify customers with a higher probability of purchasing a financial product, making marketing campaigns unproductive. In this work, a model based on machine learning is proposed to identify the clients who are most likely to acquire a financial product for Peruvian savings and credit cooperatives. The model was implemented using IBM SPSS Modeler for predictive analysis and tests were performed on 40,000 records on 10,000 clients, obtaining 91.25% accuracy on data not used in training.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings |
Editores | Monica Andrea Rico Martinez |
Editorial | Institute of Electrical and Electronics Engineers Inc. |
ISBN (versión digital) | 9781728194660 |
DOI | |
Estado | Publicada - 30 set. 2020 |
Publicado de forma externa | Sí |
Evento | 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - 2020 International Conference on Innovation and Trends in Engineering, CONIITI 2020 - Bogota, Colombia Duración: 30 set. 2020 → 2 oct. 2020 |
Serie de la publicación
Nombre | 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - Conference Proceedings |
---|
Conferencia
Conferencia | 2020 Congreso Internacional de Innovacion y Tendencias en Ingenieria, CONIITI 2020 - 2020 International Conference on Innovation and Trends in Engineering, CONIITI 2020 |
---|---|
País/Territorio | Colombia |
Ciudad | Bogota |
Período | 30/09/20 → 2/10/20 |
Nota bibliográfica
Publisher Copyright:© 2020 IEEE.