Real time facial expression recognition system based on deep learning

Jose Carlos Bustamante, Ciro Rodriguez, Doris Esenarro

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

12 Citas (Scopus)

Resumen

©BEIESP. The automatic detection of facial expressions is an active research topic, since its wide fields of applications in human-computer interaction, games, security or education. However, the latest studies have been made in controlled laboratory environments, which is not according to real world scenarios. For that reason, a real time Facial Expression Recognition System (FERS) is proposed in this paper, in which a deep learning approach is applied to enhance the detection of six basic emotions: happiness, sadness, anger, disgust, fear and surprise in a real-time video streaming. This system is composed of three main components: face detection, face preparation and face expression classification. The results of proposed FERS achieve a 65% of accuracy, trained over 35558 face images..
Idioma originalInglés estadounidense
Páginas (desde-hasta)4047-4051
Número de páginas5
PublicaciónInternational Journal of Recent Technology and Engineering
DOI
EstadoPublicada - 1 set. 2019

Huella

Profundice en los temas de investigación de 'Real time facial expression recognition system based on deep learning'. En conjunto forman una huella única.

Citar esto