Resumen
Suicide is one of the most distinguished causes of death on the news worldwide. There are several factors and variables that can lead a person to commit this act, for example, stress, self-esteem, depression, among others. The causes and profiles of suicide cases are not revealed in detail by the competent institutions. We propose a simulation with a systematically generated dataset; such data reflect the adolescent population with suicidal tendency in Peru. We will evaluate three algorithms of supervised machine learning as a result of the algorithm C4.5 which is based on the trees to classify in a better way the suicidal tendency of adolescents. We finally propose a desktop tool that determines the suicidal tendency level of the adolescent.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | 2017 36th International Conference of the Chilean Computer Science Society, SCCC 2017 |
Editorial | IEEE Computer Society |
Páginas | 1-6 |
Número de páginas | 6 |
ISBN (versión digital) | 9781538634837 |
DOI | |
Estado | Publicada - 2 jul. 2017 |
Publicado de forma externa | Sí |
Evento | 36th International Conference of the Chilean Computer Science Society, SCCC 2017 - Arica, Chile Duración: 16 oct. 2017 → 20 oct. 2017 |
Serie de la publicación
Nombre | Proceedings - International Conference of the Chilean Computer Science Society, SCCC |
---|---|
Volumen | 2017-October |
ISSN (versión impresa) | 1522-4902 |
Conferencia
Conferencia | 36th International Conference of the Chilean Computer Science Society, SCCC 2017 |
---|---|
País/Territorio | Chile |
Ciudad | Arica |
Período | 16/10/17 → 20/10/17 |
Nota bibliográfica
Publisher Copyright:© 2017 IEEE.