Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds

E. A. Papa Quiroz, E. M. Quispe, P. Roberto Oliveira

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

44 Citas (Scopus)

Resumen

This paper extends the full convergence of the steepest descent method with a generalized Armijo search and a proximal regularization to solve minimization problems with quasiconvex objective functions on complete Riemannian manifolds. Previous convergence results are obtained as particular cases and some examples in non-Euclidian spaces are given. In particular, our approach can be used to solve constrained minimization problems with nonconvex objective functions in Euclidian spaces if the set of constraints is a Riemannian manifold and the objective function is quasiconvex in this manifold.

Idioma originalInglés
Páginas (desde-hasta)467-477
Número de páginas11
PublicaciónJournal of Mathematical Analysis and Applications
Volumen341
N.º1
DOI
EstadoPublicada - 1 may. 2008

Huella

Profundice en los temas de investigación de 'Steepest descent method with a generalized Armijo search for quasiconvex functions on Riemannian manifolds'. En conjunto forman una huella única.

Citar esto