TY - JOUR
T1 - Structure-Property-Performance Relationship of Ultrathin Pd-Au Alloy Catalyst Layers for Low-Temperature Ethanol Oxidation in Alkaline Media
AU - McClure, Joshua P.
AU - Boltersdorf, Jonathan
AU - Baker, David R.
AU - Farinha, Thomas G.
AU - Dzuricky, Nicholas
AU - Villegas, Cesar E.P.
AU - Rocha, Alexandre R.
AU - Leite, Marina S.
N1 - Publisher Copyright:
© 2019 American Chemical Society.
PY - 2019/5/2
Y1 - 2019/5/2
N2 - Pd-containing alloys are promising materials for catalysis. Yet, the relationship of the structure-property performance strongly depends on their chemical composition, which is currently not fully resolved. Herein, we present a physical vapor deposition methodology for developing PdxAu1-x alloys with fine control over the chemical composition. We establish direct correlations between the composition and these materials' structural and electronic properties with its catalytic activity in an ethanol (EtOH) oxidation reaction. By combining X-ray diffraction (XRD) and X-ray photelectron spectroscopy (XPS) measurements, we validate that the Pd content within both bulk and surface compositions can be finely controlled in an ultrathin-film regime. Catalytic oxidation of EtOH on the PdxAu1-x electrodes presents the largest forward-sweeping current density for x = 0.73 at â135 mA cm-2, with the lowest onset potential and largest peak activity of 639 A gPd -1 observed for x = 0.58. Density functional theory (DFT) calculations and XPS measurements demonstrate that the valence band of the alloys is completely dominated by Pd particularly near the Fermi level, regardless of its chemical composition. Moreover, DFT provides key insights into the PdxAu1-x ligand effect, with relevant chemisorption activity descriptors probed for a large number of surface arrangements. These results demonstrate that alloys can outperform pure metals in catalytic processes, with fine control of the chemical composition being a powerful tuning knob for the electronic properties and, therefore, the catalytic activity of ultrathin PdxAu1-x catalysts. Our high-throughput experimental methodology, in connection with DFT calculations, provides a unique foundation for further materials' discovery, including machine-learning predictions for novel alloys, the development of Pd-alloyed membranes for the purification of reformate gases, binder-free ultrathin electrocatalysts for fuel cells, and room temperature lithography-based development of nanostructures for optically driven processes.
AB - Pd-containing alloys are promising materials for catalysis. Yet, the relationship of the structure-property performance strongly depends on their chemical composition, which is currently not fully resolved. Herein, we present a physical vapor deposition methodology for developing PdxAu1-x alloys with fine control over the chemical composition. We establish direct correlations between the composition and these materials' structural and electronic properties with its catalytic activity in an ethanol (EtOH) oxidation reaction. By combining X-ray diffraction (XRD) and X-ray photelectron spectroscopy (XPS) measurements, we validate that the Pd content within both bulk and surface compositions can be finely controlled in an ultrathin-film regime. Catalytic oxidation of EtOH on the PdxAu1-x electrodes presents the largest forward-sweeping current density for x = 0.73 at â135 mA cm-2, with the lowest onset potential and largest peak activity of 639 A gPd -1 observed for x = 0.58. Density functional theory (DFT) calculations and XPS measurements demonstrate that the valence band of the alloys is completely dominated by Pd particularly near the Fermi level, regardless of its chemical composition. Moreover, DFT provides key insights into the PdxAu1-x ligand effect, with relevant chemisorption activity descriptors probed for a large number of surface arrangements. These results demonstrate that alloys can outperform pure metals in catalytic processes, with fine control of the chemical composition being a powerful tuning knob for the electronic properties and, therefore, the catalytic activity of ultrathin PdxAu1-x catalysts. Our high-throughput experimental methodology, in connection with DFT calculations, provides a unique foundation for further materials' discovery, including machine-learning predictions for novel alloys, the development of Pd-alloyed membranes for the purification of reformate gases, binder-free ultrathin electrocatalysts for fuel cells, and room temperature lithography-based development of nanostructures for optically driven processes.
KW - Au
KW - Pd
KW - alkaline medium
KW - band structure
KW - electrocatalysis
KW - ethanol oxidation
KW - metal alloys
KW - ultrathin catalyst layer
UR - http://www.scopus.com/inward/record.url?scp=85065773477&partnerID=8YFLogxK
U2 - 10.1021/acsami.9b01389
DO - 10.1021/acsami.9b01389
M3 - Artículo de revisión
C2 - 31044596
AN - SCOPUS:85065773477
SN - 1944-8244
VL - 11
SP - 24919
EP - 24932
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
IS - 28
ER -