The asymptotic behavior of the linear transmission problem in viscoelasticity

Margareth Alves, Jaime Muñoz Rivera, Mauricio Sepúlveda, Octavio Vera Villagrán, María Zegarra Garay

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

23 Citas (Scopus)

Resumen

We consider a transmission problem with localized Kelvin-Voigt viscoelastic damping. Our main result is to show that the corresponding semigroup (SA(t))t≥0 is not exponentially stable, but the solution of the system decays polynomially to zero as 1/t2 when the initial data are taken over the domain D(A). Moreover, we prove that this rate of decay is optimal. Finally, using a second order scheme that ensures the decay of energy (Newmark-β method), we give some numerical examples which demonstrate this polynomial asymptotic behavior.

Idioma originalInglés
Páginas (desde-hasta)483-497
Número de páginas15
PublicaciónMathematische Nachrichten
Volumen287
N.º5-6
DOI
EstadoPublicada - abr 2014

Huella

Profundice en los temas de investigación de 'The asymptotic behavior of the linear transmission problem in viscoelasticity'. En conjunto forman una huella única.

Citar esto