Resumen
We consider a transmission problem with localized Kelvin-Voigt viscoelastic damping. Our main result is to show that the corresponding semigroup (SA(t))t≥0 is not exponentially stable, but the solution of the system decays polynomially to zero as 1/t2 when the initial data are taken over the domain D(A). Moreover, we prove that this rate of decay is optimal. Finally, using a second order scheme that ensures the decay of energy (Newmark-β method), we give some numerical examples which demonstrate this polynomial asymptotic behavior.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 483-497 |
Número de páginas | 15 |
Publicación | Mathematische Nachrichten |
Volumen | 287 |
N.º | 5-6 |
DOI | |
Estado | Publicada - abr. 2014 |
Publicado de forma externa | Sí |