The asymptotic behavior of the linear transmission problem in viscoelasticity

Margareth Alves, Jaime Muñoz Rivera, Mauricio Sepúlveda, Octavio Vera Villagrán, María Zegarra Garay

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

43 Citas (Scopus)

Resumen

We consider a transmission problem with localized Kelvin-Voigt viscoelastic damping. Our main result is to show that the corresponding semigroup (SA(t))t≥0 is not exponentially stable, but the solution of the system decays polynomially to zero as 1/t2 when the initial data are taken over the domain D(A). Moreover, we prove that this rate of decay is optimal. Finally, using a second order scheme that ensures the decay of energy (Newmark-β method), we give some numerical examples which demonstrate this polynomial asymptotic behavior.

Idioma originalInglés
Páginas (desde-hasta)483-497
Número de páginas15
PublicaciónMathematische Nachrichten
Volumen287
N.º5-6
DOI
EstadoPublicada - abr. 2014
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'The asymptotic behavior of the linear transmission problem in viscoelasticity'. En conjunto forman una huella única.

Citar esto