Resumen
Let F: Cn→ Cn be a polynomial map such that F- 1(0) is finite. We analyze the connections between the multiplicity of F, the Newton polyhedron of F and the set of special monomials with respect to F, which is a notion motivated by the integral closure of ideals in the ring of analytic function germs (Cn, 0) → C. In particular, we characterize the polynomial maps whose set of special monomials is maximal.
Idioma original | Inglés |
---|---|
Número de artículo | 71 |
Publicación | Mediterranean Journal of Mathematics |
Volumen | 14 |
N.º | 2 |
DOI | |
Estado | Publicada - 1 abr. 2017 |
Publicado de forma externa | Sí |
Nota bibliográfica
Publisher Copyright:© 2017, Springer International Publishing.