TY - JOUR
T1 - Variation in consumer pressure along 2500 km in a major upwelling system
T2 - crab predators are more important at higher latitudes
AU - Musrri, Catalina A.
AU - Poore, Alistair G.B.
AU - Hinojosa, Iván A.
AU - Macaya, Erasmo C.
AU - Pacheco, Aldo S.
AU - Pérez-Matus, Alejandro
AU - Pino-Olivares, Oscar
AU - Riquelme-Pérez, Nicolás
AU - Stotz, Wolfgang B.
AU - Valdivia, Nelson
AU - Villalobos, Vieia
AU - Thiel, Martin
N1 - Publisher Copyright:
© 2019, Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright:
Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2019/11/1
Y1 - 2019/11/1
N2 - Consumer pressure in benthic communities is predicted to be higher at low than at high latitudes, but support for this pattern has been ambiguous, especially for herbivory. To understand large-scale variation in biotic interactions, we quantify consumption (predation and herbivory) along 2500 km of the Chilean coast (19°S–42°S). We deployed tethering assays at ten sites with three different baits: the crab Petrolisthes laevigatus as living prey for predators, dried squid as dead prey for predators/scavengers, and the kelp Lessonia spp. for herbivores. Underwater videos were used to characterize the consumer community and identify those species consuming baits. The species composition of consumers, frequency of occurrence, and maximum abundance (MaxN) of crustaceans and the blenniid fish Scartichthys spp. varied across sites. Consumption of P. laevigatus and kelp did not vary with latitude, while squid baits were consumed more quickly at mid and high latitudes. This is likely explained by the increased occurrence of predatory crabs, which was positively correlated with consumption of squidpops after 2 h. Crabs, rather than fish, were the principal consumers of squid baits (91% of all recorded predation events) at sites south of 30°S. Fish and crustaceans preyed in similar proportion on P. laevigatus, with most fish predation events at northern sites. The absence of any strong latitudinal patterns in consumption rate of tethered prey is likely due to redundancy among consumers across the latitudinal range, with crustaceans gaining in importance with increasing latitude, possibly replacing fish as key predators.
AB - Consumer pressure in benthic communities is predicted to be higher at low than at high latitudes, but support for this pattern has been ambiguous, especially for herbivory. To understand large-scale variation in biotic interactions, we quantify consumption (predation and herbivory) along 2500 km of the Chilean coast (19°S–42°S). We deployed tethering assays at ten sites with three different baits: the crab Petrolisthes laevigatus as living prey for predators, dried squid as dead prey for predators/scavengers, and the kelp Lessonia spp. for herbivores. Underwater videos were used to characterize the consumer community and identify those species consuming baits. The species composition of consumers, frequency of occurrence, and maximum abundance (MaxN) of crustaceans and the blenniid fish Scartichthys spp. varied across sites. Consumption of P. laevigatus and kelp did not vary with latitude, while squid baits were consumed more quickly at mid and high latitudes. This is likely explained by the increased occurrence of predatory crabs, which was positively correlated with consumption of squidpops after 2 h. Crabs, rather than fish, were the principal consumers of squid baits (91% of all recorded predation events) at sites south of 30°S. Fish and crustaceans preyed in similar proportion on P. laevigatus, with most fish predation events at northern sites. The absence of any strong latitudinal patterns in consumption rate of tethered prey is likely due to redundancy among consumers across the latitudinal range, with crustaceans gaining in importance with increasing latitude, possibly replacing fish as key predators.
UR - http://www.scopus.com/inward/record.url?scp=85073548231&partnerID=8YFLogxK
U2 - 10.1007/s00227-019-3587-0
DO - 10.1007/s00227-019-3587-0
M3 - Artículo
AN - SCOPUS:85073548231
SN - 0025-3162
VL - 166
JO - Marine Biology
JF - Marine Biology
IS - 11
M1 - 142
ER -