TY - JOUR
T1 - Weapon Detection Using YOLO V3 for Smart Surveillance System
AU - Narejo, Sanam
AU - Pandey, Bishwajeet
AU - Esenarro Vargas, Doris
AU - Rodriguez, Ciro
AU - Anjum, M. Rizwan
N1 - Publisher Copyright:
© 2021 Sanam Narejo et al.
PY - 2021
Y1 - 2021
N2 - Every year, a large amount of population reconciles gun-related violence all over the world. In this work, we develop a computer-based fully automated system to identify basic armaments, particularly handguns and rifles. Recent work in the field of deep learning and transfer learning has demonstrated significant progress in the areas of object detection and recognition. We have implemented YOLO V3 "You Only Look Once"object detection model by training it on our customized dataset. The training results confirm that YOLO V3 outperforms YOLO V2 and traditional convolutional neural network (CNN). Additionally, intensive GPUs or high computation resources were not required in our approach as we used transfer learning for training our model. Applying this model in our surveillance system, we can attempt to save human life and accomplish reduction in the rate of manslaughter or mass killing. Additionally, our proposed system can also be implemented in high-end surveillance and security robots to detect a weapon or unsafe assets to avoid any kind of assault or risk to human life.
AB - Every year, a large amount of population reconciles gun-related violence all over the world. In this work, we develop a computer-based fully automated system to identify basic armaments, particularly handguns and rifles. Recent work in the field of deep learning and transfer learning has demonstrated significant progress in the areas of object detection and recognition. We have implemented YOLO V3 "You Only Look Once"object detection model by training it on our customized dataset. The training results confirm that YOLO V3 outperforms YOLO V2 and traditional convolutional neural network (CNN). Additionally, intensive GPUs or high computation resources were not required in our approach as we used transfer learning for training our model. Applying this model in our surveillance system, we can attempt to save human life and accomplish reduction in the rate of manslaughter or mass killing. Additionally, our proposed system can also be implemented in high-end surveillance and security robots to detect a weapon or unsafe assets to avoid any kind of assault or risk to human life.
UR - http://www.scopus.com/inward/record.url?scp=85107041834&partnerID=8YFLogxK
U2 - 10.1155/2021/9975700
DO - 10.1155/2021/9975700
M3 - Artículo
AN - SCOPUS:85107041834
SN - 1024-123X
VL - 2021
JO - Mathematical Problems in Engineering
JF - Mathematical Problems in Engineering
M1 - 9975700
ER -